
A tool for obtaining information on DTN traces ∗

Alfredo Goldman
Institute of Mathematics and

Statistics - USP
R. do Matão, 1010

São Paulo, SP - Brazil
gold@ime.usp.br

Paulo Floriano
Institute of Mathematics and

Statistics - USP
R. do Matão, 1010

São Paulo, SP - Brazil
floriano@ime.usp.br

Afonso Ferreira
INRIA - MASCOTTE

route des Lucioles - B.P. 93 -
F-06902

Sophia Antipolis Cedex,
France

afonso.ferreira@cnrs-
dir.fr

ABSTRACT
The applications for dynamic networks are growing every
day, and thus, so is the number of studies on them. An
important part of such studies is the generation of results
through simulation and comparison with other works. We
implemented a tool to generate information on a given net-
work trace, obtained by building its corresponding evolving
graph. This information is useful to help researchers choose
the most suitable trace for their work, to interpret the re-
sults correctly and to compare data from their work to the
optimal results in the network. In this work, we present
the implementation of the DTNTES tool which provides the
aforementioned services and use the system to evaluate the
DieselNet trace.

1. INTRODUCTION
Most of the works involving dynamic networks have at

least one purely experimental section, in which the authors
try to validate their theories or algorithms using some kind
of simulation. To that end, many works use data from real
dynamic networks [1, 2] in their experiments, as these gener-
ate results closer to reality than simulations with movement
patterns. The data obtained from a real system is called a
trace, which are widely utilized in the literature [3, 4].

Despite the large number of works developed about dy-
namic network traces, there is very little information avail-
able about the traces themselves. It is not possible to know,
for instance, if a trace has high or low connectivity, if there
are certain periods in which there are more active connec-
tions, if all the nodes are reachable, how long the journeys
between nodes take, among other characteristics that can
greatly affect algorithms running in this network. For those
reasons, it is currently a hard task to choose an appropriate
trace to use to evaluate or to validate a routing protocol.

Due to these difficulties, many algorithms that make cer-

9∗We would like to thank FAPESP (Fundação de Amparo à
Pesquisa do Estado de São Paulo) for the funding.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExtremeCom ’12, March 10-14, 2012, Zürich, Switzerland.
Copyright 2012 ACM 978-1-4503-1264-6/12/03 ...$10.00.

tain assumptions about the network do not verify if the
trace used in the experiments satisfy those necessary con-
ditions. Among the common assumptions are the periodic-
ity, which means the connections repeat themselves in fixed
size intervals; the connectivity, which vary from connected
components to the graph’s density; and the duration of the
connections, because if they are too short they may not be
exploited.

Another common situation in the literature is the works
that propose new routing algorithms for DTNs or MANETs.
To validate their work, the authors usually make compar-
isons with other algorithms. Even though these compar-
isons are useful to determine which is the best approach for
a given situation, it is not possible to know how close the
obtained results are to the optimal in the network, in terms
of message delivery, average latency and so on.

For those reasons, a trace analysis system was developed,
capable of extracting the aformentioned information by con-
structing an evolving graph [5] and running algorithms on
top of it. With the DTNTES (Delay Tolerant Network Trace
Evaluator System)1, it is possible to obtain useful metrics
about the network, connectivity data, information on opti-
mal networks, among others in either visual or text form.

With this tool, a researcher will have means to evaluate
the available traces before choosing which one to use for his
tests. The visual connectivity options provide data which
shows if the graph is sparse or dense, the reach of the nodes
and the number of active connections over time. Since cer-
tain algorithms’ performance highly depends on the network
topology, the data provided by the system can help to deter-
mine their behavior and explain performance gains or losses.
The journey option allows a researcher testing a new routing
algorithm to check the optimal paths in message delivery in
order to compare the results of the new protocol with the
best possible in that trace.

This work is organized as following: Section 2 shows the
evolving graph model, Section 3 details the implementation
of the system and each of its services, Section 4 shows the
study of the DieselNet trace and Section 5 shows our con-
clusions and future work.

2. EVOLVING GRAPHS
An evolving graph is a structure G = (G0, G1, . . . , GT),

in which T is a natural number and Gi = (V (G), E(Gi))
is a graph with node set V (G) (the same in every Gi) and

91A short paper with a preliminary implementation of DTNTES
was published in ExtremeCom 2011

edge set E(Gi) for every i between 0 and T . The number T
represents the largest time instant in which the network is
modeled. We say Gi is the graph that models the network in
time instant i. This way, the mobility of the nodes and dy-
namicity of the connections is completely modeled because
if two nodes u and v are in communication distance in time
instant i there is an edge (u, v) in E(Gi). In this case, we
say the nodes u and v are neighbors in instant i. Note that
we consider non directed edges. An example of an evolving
graph can be found in Figure 1.

t = 1 t = 2

t = 3 t = 4

9(a) 9(b)

Figure 1: Figure1(a) shows 4 snapshots of the net-
work’s connectivity and Figure 1(b) shows the cor-
responding evolving graph.

A journey between two nodes u and v, noted J(u,v), rep-
resents the path built over time from u to v. Formally,

J = (v0
t1→ v1

t2→ v2 . . . vr−1
tr→ vr), in which v0, v1, . . . , vr

are nodes in V (G), t1, t2, . . . , tr are time instants such that
t1 ≤ t2 ≤ . . . ≤ tr and (vi, vi+1) is an edge in E(Gi) for
every i between 0 and r − 1.

There are three different metrics in a journey and optimiz-
ing each of them results in a different optimal journey. Fore-
most journeys are those optimizing message arrival time, or
latency. Shortest journeys are those optimizing the number
of edges, or hopcount. Fastest journeys are those optimiz-
ing transit time, or the difference between arrival time and
departure time.

3. SERVICES IMPLEMENTATION
In order to provide data about a dynamic network trace,

we use the evolving graph model. By representing the net-
work in this format, we get all the combinatorial base and
existing algorithms this structure provides. This way, we can
use these properties to extract information from the network
so that it can be used in simulations.

To implement these analysis tools, we used the same evolv-
ing graphs structure and code already used in some previous
works [6, 7]. This program implements graphs as adjacency
lists in which every edge is a list of intervals in which it is
active and can be traversed. Using this format, it is pos-
sible to work with arbitrary interval sizes (not necessarily
integer). The system also implements the algorithms for op-
timal journeys and facilitates the implementation of other
functionalities.

To make these functionalities publicly available, a web
system was implemented because this way, it is easily acces-
sible by all the scientific comunity that works with dynamic
networks, it does not require installation and facilitates data
sharing. Nevertheless, the source code for the system will
be available if anyone wants to install it in a local sever.

The DTNTES tool was developed in Java language, since
the aforementioned evolving graphs structure is also im-

plemented is this language. The web framework used is
Google Web Toolkit, which allows the creation of efficient
and portable web applications and allows the programmer
to focus on the functionality rather than the adaptability to
different browsers. This framework also provides the Google
Chart Tools, an API that creates and shows interactive and
dynamic charts of various types in an easy and straigthfor-
ward way. Figure 2 shows the system’s initial screen.

Figure 2: DTNTES system initial screen.

First of all, the user must upload his trace in one of the
system’s supported formats. Then, the trace is interpreted
and an evolving graph is built and saved for future use. The
graph is stored in the system in a proper format, designed
to facilitate parsing and interpretation. The file informs the
number of nodes and the number of edges. For each edge,
there is a line in the file with the two nodes, the time taken
to traverse the edge and the list of intervals in which the
edge is active. In this format, the graph is built edge by
edge, eliminating the need to store any extra data.

The program data input accepts the format described
above, and the ones accepted by the ONE simulator [8] and
used in the DieselNet traces. Adding new formats is very
simple and consists in the creation of a new reader class and
adding it to the visual interface. Even though the system
reads these different formats, the trace is always stored in
the default format, since it is the most suited for the data
recovery. The persistency is made with simple files, but can
be easily extended to a database.

The functionality of the system consists in a set of services
that can be executed over the traces. These services are split
into connectivity related and journey related. In the next
sections we detail the utility and implementation of every
service in the DTNTES tool.

3.1 Connectivity services
The network connectivity is one of the most important

aspects researchers must consider when choosing a trace for
their work. The information about connectivity can radi-
cally alter the interpretation of the results of a study de-
veloped over a trace, since algorithms can have completely
different behaviors depending on the frequency of the en-
counters between nodes. For that reason, the main objec-
tive of the tool is to provide information that allows the
characterization of the density of the connections in a trace.

To that end, the system provides five charts aggregat-
ing information on connectivity: ratio of direct connections,
ratio of journey connections, number of active direct con-
nections over time, ratio of pairs connected by journeys over

time and stability index. The system also presents four met-
rics to estimate the separation degree of the nodes in time
and space. The metrics relative to the size of the journeys
are very common in the study of complex networks [9]. The
metrics related to the arrival date are equivalent to the space
related, but adapted to the context of journeys. Those met-
rics are the average and maximum foremost journey transit
time and the average and maximum shortest journey size
(also called diameter of the graph).

The direct connectivity ratio chart shows, for every node
u in the graph, the size of the set of nodes S such that there
is an edge (u, v) for every v in S divided by the total number
of nodes. To calculate this set for a given node, this node’s
adjacency list must be traversed and the number of edges
on the list counted. The nodes have been grouped by ratio
intervals so that a column chart can show the information
more clearly.

With this chart, it is possible to visualize the degree of the
nodes, if hub nodes exist (nodes that participate in many
connections and, so, are very important for the network’s
general connectivity) and it is possible to have an idea of
the graph’s density, since if there are too many nodes with
low direct connectivity ratio, then the graph is sparse. An
example of this chart can be seen in Figure 3.

Figure 3: Exemple of a direct connectivity chart.

To determine the graph’s connectivity by paths over time,
the system provides a chart with the ratio of journey con-
nections per node. For every node u, the ratio of nodes v
in the graph to which exists a journey from u. Like in the
previous chart, the data is grouped by ratio interval in a
column chart. To calculate this number for one given node,
the algorithm which calculates the foremost journey from
this node to all the others in the graph is used. After exe-
cuting this algorithm for every node, the number of journeys
found for each node is counted.

With this chart, it is possible to visualize the reach of the
nodes in terms of paths over time. Nodes that reach few
others can deliver less messages than the ones which com-
municate to many others by journeys. If most of the nodes
have low reach, it means the graph is fragmented in small
components. Otherwise, if many nodes have high journey
connectivity, the graph has a large component containing
most of the nodes. An example of this chart can be seen in
Figure 4.

The previous two charts show the connection between
nodes as a static property, which exists all the time the net-
work is functioning, but it is not true. Connections, direct
and by journeys, may fall after a short time, making the

Figure 4: Exemple of a journey connectivity chart.

numbers on the charts misleading. For that reason, the fol-
lowing charts are very important, since they show the same
data (number of direct and journey connections) over time.

The number of active direct connections per time instant
chart was calculated iterating over all the conections in the
network and incrementing a connection counter for every
time instant in its active interval. This chart shows the
time periods in which connectivity increases or diminishes.
High connectivity periods are more suitable for message de-
livery or the execution of other distributed algorithms. Also,
knowing the low connectivity periods may help energy sav-
ing in mobile networks. An example of this chart can be
seen in Figure 5.

Figure 5: Exemple of an active connections chart.

The journey connectivity per time instant chart was im-
plemented using an algorithm derived from the foremost
journey, which calculates the journey that leaves the origin
node in the latest possible instant. This algorithm is called
latest journey. We calculate this journey for every pair of
nodes in the network and put their departure times in a list.
When this list is sorted in decreasing order, the first time
instant is the moment in which the last connection ends and
so on. Thus, it is just a manner of counting the connections
in each time interval using this list.

In this chart it is possible to visualize the decay of the
network connectivity over time. The curve never rises be-
caus if a journey exists in the future, it means any message
generated before the journey’s latest departure date can be
delivered. Therefore, in this curve, it is possible to identify
the moments in which the connectivity falls permanently, as
well as the overall network connectivity, which is the value
observed at the beginning. This information is useful to de-

termine up to which moment the connectivity has a reliable
ratio. An example of this chart can be seen in Figure 6.

Figure 6: Exemple of a journey connections chart.

To determine how important to the general network con-
nectivity a single node is, the stability chart is used. The
stability ratio of a node is defined as the difference between
the number of pairs connected by journeys in the network
when that node is removed and in the original network. This
value points out the drop in the network connectivity that
occurs if that node crashes. This metric is very useful to de-
termine if there are hub nodes in the network and how many
of them. An example of this chart can be seen in Figure 7

Figure 7: Exemple of a node stability chart.

In addition to the charts, the connectivity informations for
every node in particular can be obtained in a text report,
for computer processing or a different data aggregation. The
report shows, for every node, every other node to which this
one connects, the largest fully connected time and the last
connection time.

3.2 Journey Services
The second class of services provided by the DTNTES

is determining optimal journeys between pairs of nodes in
every time instant. This information is useful in the devel-
opment of routing protocols, since an algorithm generates a
route between nodes which will hardly be optimal and the
existence of a lower bound is extremely important. In most
of the latest studies on this subject, the validation of a pro-
tocol is done only through comparisons with other existing
protocols. The problem in this approach is that every pro-
tocol has bad cases, in which the results obtained are not
good. The optimal journeys always provide the best results

possible, regardless of the case, which makes them a more
trustworthy base of comparison.

The system allows the user to pick the origin and destina-
tion nodes, shows the foremost journey, its arrival date, the
shortest journey and its size. The journey display format
shows the sequence of nodes, with the respective connec-
tion instant between each pair. In case the journey is empty
(when the origin and destination nodes are the same) or
when there is no journey, a suitable message is displayed.
The journey screen can be seen in Figure 8.

Figure 8: Exemple of the journey visualization
screen.

In addition to this friendly interface, text reports with the
full journeys, optimal arrival dates and sizes are available.
The information on these reports are the same obtained
through the visual interface, but grouped in text format to
facilitate automatic processing.

The individual information on the optimal journeys in the
network is useful when the user wishes to see a small num-
ber of journeys quickly and in detail. In case many jour-
neys are needed, the method loses eficiency. For this reason,
the tool also provides the message log processing service.
The user only has to upload a file containing, for each line,
the origin node, destination node and message creation time
and the system will return a report with the earliest arrival
date and minimum hopcount for delivery of all the messages
given. This service facilitates comparison between results
of a routing protocol and the optimal results in a network
and is especially important for researchers using traces in
the study of routing algorithms.

3.3 Periodicity
Another aspect of dynamic networks approached by the

DTNTES is the periodicity of the connections. We say an
edge is periodic if there is a pattern in its connections and
disconnections that repeats itself over time. If all the edges
of a network are periodic, the network is periodic. This
characteristic is important for many algorithms as it implies
that every connection will repeat itself in the future, thus,
the network connectivity over time never changes.

The problem of detecting a pattern in an edge’s connec-
tions is similar to pattern searching in texts. But, since the
searched pattern is not known, it is necessary to test all the
possibilities, which takes quadratic time in the number of
connections in the edge and the same calculation must be
done for every edge in the network. The problem in this
approach is that it only detects periodicity if the pattern is
strictly followed, which will rarely be true in networks im-
plemented in the real world. This way, the ideal would be to

find a definition of periodicity which allows a certain error
margin so that an algorithm could get more useful results
about the real traces.

The DTNTES provides a text report about the periodic-
ity of each edge in the network, using the aforementioned
strict approach. A slight modification allows the existance
of a warmup period in the beginning before considering the
periodicity. The report shows, for every edge, the size of
the necessary warmup time and the size of every period of
the edge, or a message in case the edge is not periodic. The
usefulness of this information is limited due to the problems
in the periodicity definition and it is a challenge to improve
it and the algorithms to determine this property more accu-
rately.

4. CASE STUDY: DIESELNET
To demonstrate the usefulness of the developed tool and

all its functionalities, we will show, in this section, an ex-
ample of its use with a real trace from the DieselNet [3]
network. The goal of this study is to show what kind of
information and conclusions are possible to extract from a
trace using the DTNTES and how useful it can be to the
field researchers.

DieselNet is a vehicular network infrastructure set on the
University of Massachusetts Amherst campus, covering the
neighboring county. It is made up of 30 buses equipped
with HaCom Open Brick computers (577MHz CPU, 256Mb
RAM) powered by a 24V battery. A 802.11b access point is
connected to the computer and provides DHCP access to the
passengers and passersby. A second 802.11b interface con-
stantly scans the surrounding area in search of other buses
and access points. Each bus runs Linux in a 40Gb HD and
also carries a GPS that registers its position.

The traces used in this paper were obtained between Oc-
tober 22nd and November 18th, 2007, in work days only,
making 20 days of traces. Each file constitutes a working
day in the network and shows, for every connection between
two buses or a bus and an external access point, one line
containing the nodes’ identifiers, the time the connection
begins, the duration in seconds, the amount of data trans-
fered and the latitude and longitude of the connection. The
files of bus to bus and bus to access point connections are
separate but were merged before being inserted in the DT-
NTES.

All the files from the 2007 DieselNet traces were uploaded
to the tool so that a comparative analysis of the different
days could be performed. In the next section, we show the
results obtained from the DTNTES.

4.1 Characterizing the DieselNet network
First of all, we shall analyse the network metrics provided

by the system in the information page. In Table 1, the data
collected from all the days in the trace were aggregated. It
is noticeable that the average transit time (difference be-
tween the arrival and departure date) of a foremost journey
between two nodes is almost 16000 seconds, almost 4 and a
half hours. Considering there are a lot more access points
than buses in the network, it is natural that the communi-
cation between distant poins takes a long time, since it is
necessary to wait for a vehicle to pass and take the message.
The maximum transit time of a journey is practically 24h,
which is the total working time of each file’s network.

By observing the shortest journey metrics it is noticeable

Metric Avg. Std. Deviation
Avg. foremost. transit time 15909.6 1963.77
Max. foremost transit time. 85083.05 1183.35

Avg. shortest size 2.89 0.09
Max. shortest size 9.82 1.09

Table 1: Averages and standard deviations for the
metrics of all the days of the DieselNet traces.

that the nodes are, in average, 3 hops apart. This implies
that, in general, a message between two access points must
pass through 2 buses to reach its destination. Since the time
a shortest journeys takes to arrive is always bigger than a
foremost journey, we can conclude that each hop takes over
one and a half hour, in average. As shown by the standard
deviations in the table, the network metrics generated by
the many days are not so different, which can be explained
by the fact that the buses have a fixed route and schedule.

In the direct connectivity and journey connectivity charts
shown on Figures 9 and 10, it is noticeable that most of
the nodes connect directly to less than 10% of the other
nodes in the network, but, also, most of them connect by
journeys to more than 90% of the nodes. This shows that
the network has high connectivity by journeys, even though
nearly all the nodes have low degree. From this data, we
can infer that there is a large component in the graph, con-
taining almost all the nodes and there may be smaller ones,
but these constitute just a small fraction of network. The
connectivity charts are very similar for all the days in the
trace, presenting the same distributions of number of nodes
per ratio interval.

Figure 9: Number of nodes per direct connectivity
ratio interval chart for one of the DieselNet days.

Figure 10: Number of nodes per journey connectiv-
ity ratio interval chart for one of the DieselNet days.

In the direct active connections per time instant chart, we
can see that there is a large period of time with no connec-
tivity, approximately between the 9000 and 22000 seconds
(between 2h30 and 6h in the morning) in all the days of the

trace. With this information we can infer that the buses do
not circulate during the early hours, so, this period could be
ignored by the users of the trace, or used as a warmup time
for the algorithms. The number of direct active connections
is somewhat constant during the daytime, falling a little in
the night. In some days, the no connection period is larger,
starting before 1h, which shows that some days the bus run
until later. Apart from this minor difference, the traces are
very similar in all the days. The Figure 11 shows the chart
for one of the days.

Figure 11: Number of direct active connections per
time instant chart for one of the DieselNet days.

In the journey connections over time chart, we can notice
that the connectivity starts at approximately 85% and keeps
this level during all the night, since no connections are lost
in this period. During the day, the connectivity ratio drops
gradually, which is natural, considering many of the bus
to access point connections probably happen only once a
day. The fact that there are no sudden connectivity drops
points to the absence of bridge connections (those that, if
lost, divide the graph in two components).

Figure 12: Ratio of pairs of nodes communicating by
journeys per time instant chart for one the Diesel-
Net days.

The connectivity curves are very simular in all of the days,
each one reaching less than 50% approximately at 50000 sec-
onds (14h) and less than 25% approximately at 65000 sec-
onds (18h). The curves also show a concavity shift between
the 50% and 25% connectivity, which indicates a steeper
drop in this point and slower drop near the end of the work-
ing time. Figure 12 shows this chart for one of the days.

In the stability chart, we can see that practically all the
nodes cause less than 10% of disconnection on the network if
removed. This is true for all the days in the trace, with some
of them having 1 or 2 nodes causing between 10% and 20%
of disconnection. This fact shows that the DieselNet traces
are very stable and not vulnerable to single crashes. It is
natural that the crash of an external access point should
not affect the overall connectivity, but it is expected that
if a bus stops working, many pairs of access points would
disconnect. But, as the chart in Figure 13 shows, a single
bus crash does not cause a significant loss of connectivity.

Figure 13: Number of nodes per stability index in-
terval for one of the DieselNet days.

5. CONCLUSION
In this work, we presented the Delay Tolerant Network

Trace Evaluator System, described the implementation of all
its connectivity and journey services and showed an example
of its utilization by studying the DieselNet network trace.
The system is available in the page
http://grenoble.ime.usp.br/∼paulo/dtn/dtntes.

We believe this tool will be very useful for researchers who
wish to extract information about a trace before using it or
to reach more precise conclusions about their studies. In the
same way, the data about journeys and message delivery is
very useful to provide a lower bound for routing protocols.

As future work, new functionalities can be added to the
system to improve data visualization, raise the amount of
information provided, the number of accepted formats for
trace upload, among other upgrades in user interface. Fur-
thermore, it is a challenge to improve the definition of pe-
riodicity in order to provide useful tools to determine that
property on the traces.

6. REFERENCES
[1] “Umass trace repository,” http://traces.cs.umass.edu/,

accessed in January 2012.

[2] “Crawdad - a community resource for archiving wireless
data at dartmouth,” http://crawdad.cs.dartmouth.edu,
accessed in January 2012.

[3] A. Balasubramanian, B. Levine, and A. Venkataramani,
“Enhancing interactive web applications in hybrid
networks,” in 14th MobiCom. ACM, 2008, pp. 70–80.

[4] J. Burgess, B. Gallagher, D. Jensen, and B. Levine,
“Maxprop: Routing for vehicle-based
disruption-tolerant networks,” in Proc. IEEE InfoCom,
vol. 6. Barcelona, Spain, 2006, pp. 1–11.

[5] A. Ferreira, “On models and algorithms for dynamic
communication networks: The case for evolving
graphs,” in 4o AlgoTel, 2002, pp. 155–161.

[6] A. Goldman, P. Floriano, and C. Machado, “Optimal
journeys and trade-offs on dtns,” in 2nd ExtremeCom,
2010.

[7] A. Goldman, C. Ferreira, C. Machado, and P. Floriano,
“Jornadas mais rápidas e compromissos em DTNs,” in
XXVIII SBRC, 2010.

[8] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE
Simulator for DTN Protocol Evaluation,” in SIMUTools
’09: Proceedings of the 2nd ICST. New York, NY,
USA: ICST, 2009.

[9] A. Loureiro, A. Frery, R. Mini, A. Aquino, H. Ramos,
and M. Almiron, “Redes complexas na modelagem de
redes de computadores,” SBRC 2010 Minicursos, 2010.

